Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Versatile Occupant Analysis Model (V.O.A.M) for Frontal Impacts Using LS-DYNA and MADYMO

2005-04-11
2005-01-1000
Regulations implemented by safety commissions throughout the world have resulted in extensive physical testing to protect the occupants during frontal impact events. Significant prototype and test costs aimed at optimizing structure and restraint systems are associated with meeting these regulations. To help reduce development costs, Computer Aided Engineering (CAE) is often applied. LS-DYNA [1] coupled with MADYMO [2] is widely used in crash and occupant safety simulation. An analysis technique which utilized a single model to design and optimize interiors (instrument panel, seats, visor, steering wheel, steering column) and restraints (airbag, seatbelts, retractor, pre-tensioner) was developed. The single model concept captures the global structural kinematics through minimal vehicle representation. Global vehicle modes such as pitch and roll can be represented by applying prescribed motion boundary conditions extracted from full vehicle models.
Technical Paper

Vibro-Acoustic Behavior of Bead-Stiffened Flat Panels: FEA, SEA, and Experimental Analysis

1999-05-17
1999-01-1698
Vibration and sound radiation characteristics of bead-stiffened panels are investigated. Rectangular panels with different bead configurations are considered. The attention is focused on various design parameters, such as orientation, depth, and periodicity, and their effects on equivalent bending stiffness, modal density, radiation efficiency and sound transmission. A combined FEA-SEA approach is used to determine the response characteristics of panels across a broad frequency range. The details of the beads are represented in fine-meshed FEA models. Based on predicted surface velocities, Rayleigh integral is evaluated numerically to calculate the sound pressure, sound power and then the radiation efficiency of beaded panels. Analytical results are confirmed by comparing them with experimental measurements. In the experiments, the modal densities of the panels are inferred from averaged mechanical conductance.
Technical Paper

“Doing More with Less” - The Fuel Economy Benefits of Cooled EGR on a Direct Injected Spark Ignited Boosted Engine

2010-04-12
2010-01-0589
Due to the rising costs of fuel and increasingly stringent regulations, auto makers are in need of technology to enable more fuel-efficient powertrain technologies to be introduced to the marketplace. Such powertrains must not sacrifice performance, safety or driver comfort. Today's engine and powertrain manufacturers must, therefore, do more with less by achieving acceptable vehicle performance while reducing fuel consumption. One effective method to achieve this is the extreme downsizing of current direct injection spark ignited (DISI) engines through the use of high levels of boosting and cooled exhaust gas recirculation (EGR). Key challenges to highly downsized gasoline engines are retarded combustion to prevent engine knocking and the necessity to operate at air/fuel ratios that are significantly richer than the stoichiometric ratio.
X